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A numerical method is developed for solving the optical Bloch equations in the
center-of-mass momentum space for a closedV system in a counterpropagating field
configuration. The method consists of an iterative procedure based on the matrix
continued fraction and a transformation by which the optical Bloch equations can be
organized into the tridiagonal matrix recurrence form.c© 2001 Academic Press
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A variety of laser cooling and trapping techniques have been developed during the past
two decades in an effort to push the atomic temperature to its theoretical limitT = 0;
see for example, [1]. These advances eventually led to the recent spectacular display of
Bose–Einstein condensation of alkali atoms [2–4]. In this paper, we present a numerical
method for studying the cooling features of a closedV system in a counterpropagating
field configuration as shown in Fig. 1. Here, the 1–3 transition is dipole-forbidden while
the 1–2 and 3–2 transitions are characterized by the same spontaneous decay rate0. In
addition, the latter two transitions are driven, independently, by laser fields of the same
frequencyω, wave numberk, and Rabi frequencyE. This model can be realized, in real
atoms, by driving aJ = 0 (ground level) toJ = 1 (excited level) atomic transition with
counterpropagating laser fields ofσ+ andσ− polarizations. An in-depth analysis of the
cooling force was given by Dalibard, Reynaud, and Cohen-Tannoudji [5] and later by Cai
and Bigelow [6] in a semiclassical approach in which the motion of the atoms is described
by means of the Fokker–Planck equations. The Doppler effect is identified as the underlying
physical mechanism leading to cooling in this model. As a result, the average kinetic energy
K̄ is limited to the energy width of the excited levels, that is,

K̄ ≡ 1p
2

2M
' h̄0

4
, (1)

whereM is the atomic mass and1p is the momentum width. Letωr ≡ h̄k2/2M be the
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FIG. 1. A graphical representation of three-levelV-type atoms interacting with two counterpropagating
laser fields.

photon recoil frequency shift. For atoms of narrow line,0 ≤ ωr and the momentum width
can be narrower than ¯hk according to Eq. (1). In such a circumstance, the de Broglie
matter wavelength of the atoms exceeds the optical wavelength of the laser fields. No
longer can atoms be considered particles moving classically under the influence of the
electromagnetic fields. Hence, the results obtained from the semiclassical approach may no
longer hold.

This consideration led Castin, Wallis, and Dalibard [7] (also Wallis and Ertmer [8]) to
a quantum mechanical treatment in which both the internal and external degrees of the
atomic freedom are treated quantum mechanically. TheV system, compared to others,
forbids a photon of one direction to be transferred, via the stimulated process, to a photon
of the opposite direction, a phenomenon known as the coherent photon redistribution.
As a result, atoms initially residing at|2, p〉 can only recycle among the three members,
(|2, p〉, |1, p− h̄k〉, |3, p+ h̄k〉), of a momentum family£(p) as far as the stimulated
process is concerned. The coupling among the members of different momentum families
is accomplished through the momentum redistribution by the spontaneous emission. Due
to the randomness in the spontaneous emission, an excited atom of momentump+ q
with |q| ≤ h̄k has theN(q) probability of becoming a ground atom of momentump,
where

N(q) = 3

8h̄k

[
1+

(
q

h̄k

)2
]
,

assuming the emitted photons are circularly polarized. Following the notion of the momen-
tum family [10, 11] along with the momentum redistribution by the spontaneous emission,
Castin, Wallis, and Dalibard [7] constructed, for each momentum family£(p) , nine equa-
tions corresponding to each density-matrix element in£(p). These equations are known
as the generalized optical Bloch (GOB) equations that are both differential (with respect
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to time) and integral (over the center-of-mass momentum). Recently, we have developed a
matrix continued fraction method to solve the GOB equations for the purpose of studying
the effect of atomic recoil on the absorption spectrum of drivenV-type atoms [9]. In that
work, theV-system is open and the focus of the work is on the spectrum calculation. In this
paper, we extend this method to the closedV-system and focus our attention on the atomic
momentum distribution which determines the temperature of the atoms.

To obtain the steady state solution, we set all the time derivatives in the GOB equations to
zero. This leads to nine coupled integral equations. A straightforward method in dealing with
the coupled equations is to first reduce the coupled equations to one equation involving one
unknown by forward substitution, and then to obtain all the unknowns by backward substitu-
tion, starting from the solution to the equation for one unknown. Letρ22(p) = 〈p, 2|ρ|2, p〉,
ρ11(p) = 〈p− h̄k, 1|ρ|1, p− h̄k〉, andρ33(p) = 〈p+ h̄k, 3|ρ|3, p+ h̄k〉, whereρ is the
density-matrix operator andp is the eigenvalue of the center-of-mass momentum operator.
Our derivation (not shown for simplicity) leads to an integral equation forρ22(p) in the
form of

3(p)ρ22(p) = 0
∫ +h̄k

−h̄k
dq N(q)c32(p− h̄k+ q)ρ22(p− h̄k+ q)

+0
∫ +h̄k

−h̄k
dq N(q)c12(p+ h̄k+ q)ρ22(p+ h̄k+ q), (2)

where

3(p) = 0c12(p)+ 0c32(p),

andc12(p) andc32(p) are coefficients defined through the relations between the excited and
ground populations

ρ11(p) = c12(p)ρ22(p) and ρ33(p) = c32(p)ρ22(p). (3)

The explicit expressions for theseci j (p) functions are too complex to present here. For the
purpose of this paper, it seems sufficient to know that they are determined by various single-
and two-photon absorption rates, which are themselves functions of various decay rates,
the Rabi frequency, and laser detunings. Physically, Eq. (2) is a result of detailed balance
among the populations in momentum space. In addition to Eq. (2),ρ22(p) is constrained by
the closure condition, which, with the help of Eqs. (3), leads to the normalization condition
for ρ22(p), ∫ +∞

−∞
[1+ c12(p)+ c32(p)] ρ22(p) dp= 1. (4)

Evidently, the key to the total atomic momentum distribution is to develop efficient algo-
rithms for solving Eq. (2) subject to the normalization condition (4). In what follows, we
show that Eq. (2) can be cast into a tridiagonal matrix recurrence equation, and solve it by
the method of matrix continued fraction [12, 13]. To begin with, we divideq between−h̄k
and+h̄k into L divisions and replace the integrals in Eq. (2) with Simpson’s rule [14]. This
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process turns Eq. (2) into

−01p

3

0∑
l=−L

bl+L N(h̄k+ pl )c32(pn+l )ρ22(pn+l )+3(pn)ρ22(pn)

−01p

3

L∑
l=0

bl N(−h̄k+ pl )c12(pn+l )ρ22(pn+l ) = 0, (5)

wherepn = n1p andbl = 4 or 2 depending on whetherl is odd or even with the exception
of b0 = bL = 1. Note that in arriving at the form for the first sum in Eq. (5), we have made
the transformationl − L → l along with the conditionL1p = 2h̄k. Equation (5) can be
further organized into

L∑
l=−L

Al
nρ22(pn+l ) = 0, (6)

where

A0
n = 3(pn)− 01p

3
N(−h̄k)c12(pn)− 01p

3
N(h̄k)c32(pn),

Al
n = −0

1p

3
bl N(−h̄k+ pl )c12(pn+l ) if l > 0,

Al
n = −0

1p

3
bl+L N(h̄k+ pl )c12(pn+l ) if l < 0.

Next, we follow a standard procedure [14] and transform Eq. (6) into a tridiagonal matrix
recurrence equation

Q−n Ecn−1+QnEcn +Q+n Ecn+1 = 0, (7)

wherecn is a vector of dimensionL defined as

Ecn =


ρ22(pLn)

ρ22(pLn+1)
...

ρ22(pLn+L−1)

,

while Qn’s are matrices ofL × L defined as

(Q+n )i j = Aj−i+L
Ln+i−1, (Q−n )i j = Aj−i−L

Ln+i−1, (Qn)i j = Aj−i
Ln+i−1,

where Al
n = 0 if |l | > L. Let the entire momentum space, ranging frompmin to pmax be

divided into(max−min) number of 2h̄k blocks, where max−min= (pmax− pmin)/2h̄k.
(In this paper,pmin = −pmax since our model is symmetric.) As long aspmin and pmax

remain far away from the center, the elements in bothEcmax+1 and Ecmin−1 remain fairly
constant. For technical reasons, we first assume this constant to be 1 and set all the elements
in Ecmax+1 andEcmin−1 to 1. (This constant will later be fixed by the normalization condition.)
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To solve Eq. (7) under this assumption, we first require that the solution to Eq. (7) follow a
backward ansatz

Ecn−1 = −Sn−1Q+n−1Ecn − Ean−1, (8)

whereSn is a matrix of dimensionL × L, andEan is a vector of dimensionL. Sn andEan are
found, after Eq. (8) is inserted into Eq. (7), to obey

Sn = (Qn −Q−n Sn−1Q+n−1)
−1,

(9)
Ean = −SnQ−n Ean−1,

for n > min, and to be equal to

Smin = (Qmin)
−1,

(10)
Eamin = SminQ−minEcmin−1,

for n = min. The numerical procedures are summarized as follows. First, obtain all theSn

and Ean from Eq. (9) by forward iteration starting from Eq. (10). Second, solve for all the
Ecn from Eq. (8) by backward iteration starting fromEcmax+1. Finally, divide the solution by
the normalization factor,

∫ +∞
−∞ [1+ c12(p)+ c32(p)] ρ22(p) dp, to obtain the true excited

momentum distributionρ22(p).
Items of interest in our study include the total momentum distribution

ρtotal(p) = ρ11(p+ h̄k)+ ρ22(p)+ ρ33(p− h̄k), (11)

and the average kinetic energy

K̄ =
∫ +∞
−∞

p2

2M
ρtotal(p) dp, (12)

which is a direct measure of the atomic temperature. In the simulation bellow, ¯hk is chosen
to be the unit for the momentum,0 to be the unit for any rates and frequencies, and the
momentum is sampled at a rate of about 10 divisions per ¯hk. Figure 2 displays a sequence
of atomic momentum distributions that distinguish themselves by their Rabi frequencies.
It is produced for atoms with relatively narrow atomic transition lines ofωr (≡Er /h̄) = 0
subject to lasers of red detuning ofδ = −2.50. It clearly shows that for atoms of narrow
line, the atomic distribution can be nonMaxwellian if the lasers are sufficiently weak.
Figure 3 shows how the average kinetic energyK̄ changes with the laser detuningδ for
different Rabi frequenciesE. It indicates that for a givenE, the average kinetic energy
reaches a minimum̄K min at a certain laser detuningδmin. It deserves mention that curve
(a) of Fig. 3 is produced under the limit of narrow atomic line (ωr /0 = 10À 1) and low
laser intensity (EL/0 = 0.1¿ 1). From curve (a), we find that̄K min ' 0.513h̄ωr and
δmin ' −43.100 = −4.31ωr . These values are in close agreement with analytical results
K̄ min ' 0.53h̄kandδmin ' −4.5ωr under the same limit [7]. In addition, we find (not shown)
that asδ increases beyondδmin (that is,δ is on the right side ofδmin), first the average kinetic
energy [Eq. (12)] fails to converge, and then the steady state atomic momentum distribution
[Eq. (11)] ceases to exist. Numerically,̄K [Eq. (12)] is recognized as being divergent if
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FIG. 2. A sequence of total atomic momentum distributionsρtotal(p) consisting of (a)E = 0.050, (b) E =
0.50, (c) E = 1.00, and (d)E = 2.50. Other parameters areωr = 0 andδ = −2.50.

it always increases with the increase in the momentum space (meaning large|pmin| and
pmax). Similarly, a solution is considered unphysical if the momentum distribution [Eq. (11)]
always broadens with the momentum space. All these results match those found by Castin,
Wallis, and Dalibard [7].

In this paper, we have applied the method of matrix continued fraction to solve steady
state GOB equations obtained by a full quantum mechanical approach. It is worthwhile
to compare this method with other numerical approaches. One way to obtain the steady
state momentum distribution is to propagate the GOB equations along time, either by
direct integration or by Monte–Carlo simulation, until the solution does not change with
time. However, this method is time consuming. Another method is to treat the steady state
GOB equations as linearly coupled equations consisting of (Nmax− Nmin)L number of
unknowns per atomic variable in momentum space. But, since the dimension of the matrix
to be inverted can be very large, this method requires a long time and much memory space.
In comparison, the matrix inverse operations in our method are all performed on matrices
of L × L dimension, whereL is typically much smaller than the total number of divisions
in the momentum space. That is why our method is efficient in terms of both computing
time and memory storage. This work, to our knowledge, represents the first application
of the method of matrix continued fraction in laser cooling problems where the center-
of-mass motion is quantized. We expect that this method will find its use in many other
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FIG. 3. The dependence of the average kinetic energy on the laser detuning for (a)E = 0.10, (b) E = 100,
and (c)E = 200. Other parameters areωr = 100 andδ = −380. The average kinetic energy is called to the
photon recoil kinetic energy:̄Kr = h̄ωr .

problems, especially in problems where subrecoil cooling features can emerge from a broad
background in momentum space [15, 16].
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